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Abstract. For a self-adjoint linear operator with discrete spectrum or a Hermitian matrix the
“extreme” eigenvalues define the boundaries of clusters in the spectrum of real eigenvalues. The
outer extreme ones are the largest and the smallest eigenvalues. If there are extended intervals in
the spectrum in which no eigenvalues are present, the eigenvalues bounding these gaps are the inner
extreme eigenvalues.

We will describe a procedure for detecting the extreme eigenvalues that relies on the relationship
between the acceleration rate of polynomial acceleration iteration and the norm of the matrix via
the spectral theorem, applicable to normal matrices. The strategy makes use of the fast growth rate
of Chebyshev polynomials to distinguish ranges in the spectrum of the matrix which are devoid of
eigenvalues.

The method is numerically stable with regard to the dimension of the matrix problem and thus
capable of handling matrices of large dimension. The overall computational cost is quadratic in the
size of a dense matrix; linear in the size of a sparse matrix. We verify computationally that the
algorithm is accurate and efficient, even on large matrices.
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1. Introduction. We present an accurate and efficient application of polynomi-
als to determine “extreme” eigenvalues of a Hermitian matrix M = I−A. Here A and
I are m×m, the latter being the identity matrix. The strategy applies in a straight-
forward way to the more general problem of finding the extreme eigenvalues of self
adjoint linear operators. This linear operator may be available to us in matrix form,
but more generally it can be presented to us in some less explicit form, or perhaps
operationally, as a computer routine or set of instructions which can be taken as a
black box input to the extreme eigenvalue strategy to be presented. We develop the
strategy for the Hermitian matrix case, as the manner in which extreme eigenvalues
of the linear operator case are obtained is identical to the matrix case.

The outer extreme eigenvalues are defined as the smallest and largest ones bound-
ing the smallest interval containing all the eigenvalues of M.

If, in addition, the eigenvalues of M are clustered, then there are gaps in the
spectrum. We denote the eigenvalues defining the gaps and that are not outer extreme
eigenvalues as the inner extreme eigenvalues.

Figure 1.1 illustrates the eigenvalue distribution of a matrix M which has both
outer and inner extreme eigenvalues. In the figure the inner extreme eigenvalues are
a′ and b′, defining in this case a single gap in the spectrum. Generality is not lost by
assuming that the eigenvalues of M are entirely contained in the interval (−1, 1) –the
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original matrix might need to be multiplied by a scaling factor for this condition to
hold–.
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Fig. 1.1. (a) Schematic of the spectrum of M and the location of the extreme eigenvalues, with
a and b corresponding to the outer ones and a′ and b′ being the inner ones, (a < a′ < b′ < b). M
can have many inner extreme eigenvalues and their location need not determined by equal intervals.
The extreme eigenvalues of A are implied by the relation M = I − A. (b) Shifted matrix M − gI.
(c) Shifted and scaled matrix (M − gI)/λ; λ = max(|a− g|, |b− g|).

The interplay between approximation theory and numerical linear algebra has
a long history (see [1], [2], [3] [4], [5], [6], [7]). Chebyshev iteration exploits the
optimality rpoperties of Chebyshev polynomials to iteratively solve linear systems of
equations [8], [9].

The determination of clusters of eigenvalues is particularly important in appli-
cations such as computational chemistry [10]. In many problems in chemistry and
physics involving matrices with clustered eigenvalues an estimate of the interval defin-
ing the larger cluster is of great interest: for example, Gear and Kevrekidis [11] pro-
pose a numerical integration scheme which is ideally suited to evolution problems
with multiscale behavior. This multiscale behavior arises because there is a clear sep-
aration in the distribution of the eigenvalues associated with the evolution operator.
The integration scheme relies on knowing where to split the spectrum of the evolution
operator. In a totally different realm, another application of our strategy would be
in the accurate determination of the extreme eigenvalues of a matrix with clustered
eigenvalues. Accurate estimates of the extreme eigenvalues can then be exploited in
building a matrix polynomial preconditioner to the given Hermitian matrix [12].

Finding the outer extreme eigenvalues, particularly when Hermitian matrices are
involved, is a straightforward application of the power method or Rayleigh Ritz, for
example. Some of the more effective strategies for finding clusters of eigenvalues
are related to the Lanczos method, particularly when large matrices are involved.
Methods for finding a few eigenvalues, usually located near a given eigenvalue, are
also available (see for example [13]). Here we present an algebraic strategy that
exploits polynomial interpolation to specifically target the determination of the gaps
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in the spectrum of the operator or matrix, and in this sense it is novel.
Our methodology is capable of estimating the inner extreme eigenvalues accu-

rately and efficiently; the accuracy will be demonstrated by numerical examples. The
computational cost of the proposed extreme eigenvalue estimation methodology is
dominated by the matrix-vector multiplies. This cost ranges from O(m2) for a dense
m×m matrix and O(m) for sparse matrices. This estimate of the complexity of the
algorithm is obtained as follows (in the dense case): each step of the iteration process
(3.1) has a cost of m2 operations.

We estimate the extreme eigenvalues of the matrix Ax = q by a technique that
we call “reverse Chebyshev acceleration” (RCA). For a Hermitian matrix the spectral
theorem gives us a sharp bound on the norm of the matrix in terms of its eigenvalues.
The rate of convergence of an iterative Chebyshev linear solver can be estimated using
this bound; if we knew the spectrum of the matrix we could obtain an optimal rate
of convergence in the implementation of the solver. Here we use this fact to obtain
the unknown extreme eigenvalues by iteratively improving on an initial guess of the
extreme eigenvalues, we start with a vector x and a right hand side vector q, that
satisfy the equality q = Ax. An algorithmic strategy that determines the degree of
“misfit” of successive guesses to the location of the extreme eigenvalues: the extent
to which the acceleration of convergence of the iterative method differs from the
acceleration that one would witness if all the eigenvalues of M = I − A were indeed
located in the guessed intervals indicates the extent to which a successive guess of the
location of the extreme eigenvalues must be modified by to contain all the eigenvalues.
The strategy, though fundamentally inspired by an iterative procedure, can be made
significantly more efficient: as we will see, the iteration can be side-stepped entirely
and reduced to solving a single equation. The computational cost will then be entirely
related to matrix-vector multiplies, O(m2) operations for dense matrices.

The RCA strategies for finding the outer and the inner extreme eigenvalues are
slightly different: the outer extreme case will use an extremal polynomial for one
interval of the real line, while the inner extreme case will employ an extremal poly-
nomial, constructed specifically over two disjoint intervals. As mentioned before, the
outer extreme eigenvalues may be found by conventional means, hence our consid-
eration of finding these with the proposed strategy is mostly motivated by didactic
considerations, that is, by first considering this case, it makes it significantly easier to
understand how the inner extreme eigenvalues will be found.

We focus here on arbitrary Hermitian matrices, i.e., dense or otherwise. However,
the procedure generalizes to the consideration of arbitrary normal matrices, in which
case the problem of finding extreme eigenvalus would be: Given a matrix A, with
possibly complex eigenvalue spectrum Sp(A), find a curve Γ “enclosing closely” Sp(A).
If the strategy is to be viable, we want to determine this curve in at most O(m2) steps.
The main ingredient in building the curve Γ is the family of Faber polynomials [14].
These reduce to Chebyshev polynomials when Γ is a line in the complex plane, the
case under consideration in this paper. Among their properties, extremal polynomials,
such as Chebyshev polynomials, grow extremely fast outside the unit interval. (See
[14], [15] for further information).

2. Extremal Property of the Chebyshev Polynomials. The Chebyshev
polynomials Tn(z) are the fastest growing polynomials, for |z| ≥ 1 (see [16]). These
polynomials satisfy the property Tn(cos θ) = cos(n θ), cos θ = z, for, z ∈ R, and
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hence

Tn

(
1
2

(
z +

1
z

))
=

1
2

(
zn +

1
zn

)
, z 6= 0.(2.1)

The extremal property of fundamental importance to the detection of eigenvalues of
a matrix is the following:

Theorem 2.1. Let Pn(z) be a polynomial of degree (at most) n with the following
property

sup
x∈[−1,1]

|Pn(z)| ≤ 1.(2.2)

Let z ∈ R with |z| > 1. Then

|Pn(z)| ≤ |Tn(z)|.

Moreover if equality is achieved above then

Pn(z) = ±Tn(z).

�
Thus, it is not possible to find Pn(z) satisfying (2.2) with

|Pn(z)| > 1
2

((
|z|+

√
z2 − 1

)n
+
(
|z| −

√
z2 − 1

)n)
, for |z| > 1.

The reason why we prefer to use (2.1) instead of direct evaluation of Tn(z) is that
(2.1) yields estimates of the rate of growth of |Tn(z)| for z /∈ [−1, 1]. If z > 1, then
Tn(z) = 1

2 (αn + α−n) , where α = z +
√

z2 − 1. More generally let z ∈ R, z /∈ [−1, 1]
and let α > 1 solve |z − 1| + |z + 1| = α + α−1. Then 1

2 (αn + α−n) ≥ |Tn(z)| ≥
1
2 (αn − α−n) . When the interval [−1, 1] is replaced by [a, b], where a < b (see Figure
1.1), the Chebyshev polynomials take the form

P a,b
n (z) := Tn

(
2z

b− a
− b + a

b− a

)
.

2.1. An Extreme Polynomial Defined On Two Disjoint Intervals. The
determination of the inner extreme eigenvalues is made possible by the proposed new
extreme polynomial for the union of two intervals [−b,−a] ∪ [a, b].

Theorem 2.2. Let 0 < a < b, and define

Pa,b
2n (z) := Tn

(
2z2

b2 − a2
− b2 + a2

b2 − a2

)
(2.3)

for z ∈ R with z /∈ [−b,−a]∪ [a, b]. Let Q2n(z) be an even polynomial with the property
that

sup
z∈[−b,−a]∪[a,b]

|Qa,b
2n (z)| ≤ 1.

Then

|Qa,b
2n (z)| ≤ |Pa,b

2n (z)|.

Proof. Because Q2n(z) is even, it is possible to find a polynomial Rn(z) of degree n
with

Q2n(z) = Rn

(
2z2

b2 − a2
− b2 + a2

b2 − a2

)
.(2.4)
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The polynomials ((
2z2

b2 − a2
− b2 + a2

b2 − a2

)k
)n

k=0

form a linearly independent set of n+1 even polynomials of degree 2k, k = 0, 1, · · · , n.
Hence this set spans all even polynomials of degree at most 2n.

Let z0 be a specific value of z and define

y0 =
2(z0)2

b2 − a2
− b2 + a2

b2 − a2
.

Then |y0| > 1 because for z ∈ [−b,−a]∪ [a, b], we have 2z2

b2−a2 − b2+a2

b2−a2 ∈ [−1, 1]. Using
Theorem 2.1 and (2.4) we have

|Tn(y0)| ≥ |Rn(y0)| = |Q2n(z0)|,

and in view of (2.3) it follows that

Tn(y0) = Pa,b
2n (z0).

�
Theorems 2.1 and 2.2 play crucial roles in the reverse acceleration of convergence

to detect extreme eigenvalues (see Section 4 and Appendix A).

3. Review of the Polynomial Acceleration Technique. The classical ac-
celeration technique, for the iterative solution of the linear system Ax = q, will be
used to find extreme eigenvalues. We do this by exploiting the relation between the
acceleration rate to the spectrum of the matrix (via the spectral theorem), optimized
via extremal polynomials, to estimate the location of the extreme eigenvalues via a
systematic seach algorithm.

We begin by reviewing the theory for accelerating iterative methods for solving
linear systems. Let A be an invertible matrix of size m and define

M = I −A,

where I is the m×m identity matrix. Assume, moreover, that the eigenvalues of M
are all less than 1 in absolute value. The iteration scheme

xk+1 = Mxk + q, k = 0, 1, 2, . . . ,(3.1)

with a given initial guess x0 converges to the solution x of Ax = q. The error
ek = xk − x at the kth step, satisfies ek = Mke0.

The iteration can be accelerated by defining parameters γ0, γ1, . . . , γn ∈ R, with∑n
k=0 γk = 1, such that a linear combination of past iterates

yn :=
n∑

k=0

γkxk,(3.2)

satisfies

‖yn − x‖ � ‖xn − x‖.(3.3)
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Using (3.2) we can thus surmise

yn − x =
n∑

k=0

γkMke0,

and

‖yn − x‖ ≤

∥∥∥∥∥
n∑

k=0

γkMk

∥∥∥∥∥ ‖e0‖.(3.4)

Define

Pn(z) :=
n∑

k=0

γkzk.(3.5)

Then

‖yn − x‖ ≤ ||Pn(M)|| ‖e0‖ = sup
z∈Sp(M)

|Pn(z)| ‖e0‖,(3.6)

where Sp denotes “the spectrum of,” provided A (and thereby M) is normal, since
for such matrices

‖Pn(A)‖ = sup
z∈Sp(A)

|Pn(z)|.

Hence the acceleration of convergence of the iterative scheme (3.1), using (3.2),
will be achieved if the coefficients γ0, γ1, · · · , γn are such that Pn(1) = 1, and the
minimax property, where

sup
z∈Sp(M)

|Pn(z)| is minimized

holds. The extremal properties of the Chebyshev polynomials make them good can-
didates for solving the minimax problem.

4. Localization of the Inner Extreme Eigenvalues. Determination of the
outer extreme eigenvalues for a Hermitian matrix is easily accomplished by the power
method. In what follows it will be assumed that these eigenvalues, and the eigenfunc-
tion associated with the largest eigenvalue are known. Nevertheless, our strategy can
be used to find the outer extreme eigenvalues, and for completeness, the strategy that
applies to this case appears in Appendix A.

The accurate and efficient estimation of the inner eigenvalues is where our ap-
proach is particularly effective and useful, since there are no well-known methods that
can make this estimate accurately in O(m2) operations for dense normal matrices.

We assume that for the Hermitian matrix M we have Sp(M) ⊂ (−1, 1). This
latter condition can always be satisfied by scaling M as shown in Figure 1.1. We
pick an x and thus determine q = Ax explicitly. We require that the initial iterate
eigenvector x0 be associated with the eigenvalue of largest absolute value of Pn(M).
Again, this is found by the power method in at most O(m2) operations. The initial
error e0 is defined once the eigenvector x0 is known.

The localization strategy which we call reverse Chebyshev acceleration (RCA),
uses the extremal polynomial P̃a,b

2n (x). It is part of the larger strategy of finding all
of the inner extreme eigenvalues.
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4.1. RCA Preliminaries. For the integer n ≥ 1, and for 0 < s < β < 1, we
denote

P̃s,β
2n (x) :=

Ps,β
2n (x)

Ps,β
2n (1)

.(4.1)

Note that P̃s,β
2n (x) is a polynomial of degree 2n. As in the setting of Subsection A the

analogue of Theorem A.1 is now
Theorem 4.1. Let β and s be as above. Let the first guess x0 be the eigenfunction

corresponding to the largest eigenvalue, in absolute terms, of Ps,β
2n (M) =

∑2n
k=0 γkMk.

Let

y2n :=
2n∑

k=0

γkxk,

where the coefficients γk are those of P̃s,β
2n (x) given above. Then all the eigenvalues

of M are located in [−β,−s] ∪ [s, β] if and only if

‖y2n − x‖ = sup
x∈[−β,−s]∪[s,β]

|P̃s,β
2n (x)| ‖e0‖.(4.2)

The proof follows the same lines as those of the proof of Theorem A.1 and is therefore
omitted. �

The analogue of Theorem A.2 in the present setting is
Theorem 4.2. Let 0 ≤ s < β < 1. Let the first guess x0 be the eigenfunction

corresponding to the largest eigenvalue, in absolute value, of M . Define e0 in terms
of x0. Assume, with the notations of Theorem 4.1, that

‖y2n − x‖ > sup
x∈[−β,−s]∪[s,β]

P̃s,β
2n (x)| ‖e0‖.(4.3)

Then there is at least one eigenvalue λ of M in (−s, s) and an estimate of the eigen-
value closest to zero is solution of the following equation:∣∣∣P̃s,β

2n (η)
∣∣∣ = ‖y2n − x‖

‖e0‖
.(4.4)

Again the proof is similar to that of Theorem A.2. �
The last results on which our algorithm will be based is
Proposition 4.1. If

‖y2n − x‖ = sup
x∈[−β,β]

|Ps,β
2n (x)| ‖e0‖(4.5)

then 0 is an eigenvalue of M . Proof. The proof follows at once from the fact that

|Ps,β
2n (0)| = sup

x∈[−β,β]

|Ps,β
2n (x)|.

�
Corolary 4.1. If 0 is not an eigenvalue of M then

‖y2n − x‖ < sup
x∈[−β,β]

|P̃s,β
2n (x)| ‖e0‖(4.6)
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Let δ denote an arbitrary real number, and η be the x real values that satisfy∣∣∣Ps,β
2n (x)

∣∣∣ = ∣∣∣∣Tn

(
2x2

β2 − s2
− β2 + s2

β2 − s2

)∣∣∣∣ = δ, δ > 1.

Specifically, these are

η = ±
√
±1

2
(β2 − s2)ỹ +

1
2
(β2 + s2)(4.7)

with, as in (A.9),

ỹ =
1
2

((
δ +

√
δ2 − 1

) 1
n

+
(
δ −

√
δ2 − 1

) 1
n

)
.(4.8)

Notice that if

δ > Tn

(
β2 + s2

β2 − s2

)
(4.9)

then there are only two real solutions, whose absolute values are greater than β,
namely,

η = ±
√

1
2
(β2 − s2)ỹ +

1
2
(β2 + s2).(4.10)

On the other hand if

1 < δ ≤ Tn

(
β2 + s2

β2 − s2

)
exactly two of the four (real) solutions are located in [−s, s]. Namely

η = ±
√
−1

2
(β2 − s2)ỹ +

1
2
(β2 + s2)(4.11)

with ỹ as above. Now let δ take the specific value

δ =
‖y2n − x‖
‖e0‖

Ps,β
2n (1).(4.12)

We illustrate key aspects of the algorithm in Figure 4.1. In this example |a| =
|b| := b, and there is one gap in the spectrum with |a′| = |b′| := a′. Suppose we
guess that the eigenvalues of M are located in [−1,−s] ∪ [s, 1]. (0 < s < 1.) If this
assumption was correct then the above algorithm tells us that we would witness an
acceleration of convergence equal to P8(s), the height of the lower horizontal line
above the x−axis in the figure. However if the true (i.e., observed) acceleration of
convergence is δ, with δ > P8(s) as is the case here, the above algorithm tells us that
the eigenvalues of M are located in [−1,−a′]∪ [a′, 1] where a′ is such that P8(a′) = δ.
The value of a′ that must be chosen is such that 0 < a′ < 1. Morever, as is implied
by the algorithm, this value of a′ is optimal in the sense that if t′ > a′ (and t′ < 1)
then there are eigenvalues of M located in [a′, t′] or [−t′,−a′].
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Fig. 4.1. Plot of Pa′=0.4,b=1
8 , as given by (2.3), with s and δ as described in the text. The

height of the horizontal line above the x-axis is P8(s).

4.2. The Algorithm. We assume that we already know the outer extremal
eigenvalues a and b, by the power method (or using the procedure outlined in Ap-
pendix A). The algorithm first shifts and scales the operator to “place” the targeted
gap with associated inner extremal eigenvalues close to the origin (see Figure 1.1).
The shift is of the form M − gI, where g is a point in the gap. A scaling is required
so that the eigenvalues of M −gI remain within the interval [−1, 1]. To find the inner
extreme eigenvalues we require initial guesses gi, i = 1, 2..,K, where K is the number
of gaps in the spectrum of M . Each gi is chosen so as to place the zero value in one
of the gaps of M . RCA is then used to find the pair of inner extreme eigenvalues a′i
and b′i associated with each gi.

The steps for identifying the first gap are:
1. scale and shift: shift and scale the matrix, so that we obtain

(M − g1I)/λ1,

where λ1 = max(|a− g1|, |b− g1|), as shown in Figure 1.1:.
2. finding the closest inner eigenvalue: apply the RCA algorithm (see below) to

find the distance σ between g1 and the closest extreme eigenvalue. It could
be α1 = (a′1 − g1)/λ1 or β1 = (b′1 − g1)/λ1. The outer extreme eigenvalues in
the scaled-shifted matrix are now α and β.

3. determining whether the closest eigenvalue is α1 or β1: shift and scale the
matrix to obtain

(M − (g1 + σ)I)/λσ,

where λσ = max(|a− g1 − σ|, |b− g1 − σ|). If (4.5) holds,

β1 = (g1 + σ)/λσ,

otherwise,

α1 = (g1 − σ)/λσ.
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4. finding the other inner extreme eigenvalue: if β1 = (g1 + σ)/λσ, we find α1

as follows: shift and scale

(M − (g1 − 2σ)I)/λ+
2σ,

where λ+
2σ = max(|a− g1 + 2σ|, |b− g1 + 2σ|), and apply the RCA algorithm

to this matrix.
if α1 = (g1 − σ)/λσ, we find β1 as follows: shift and scale

(M − (g1 + 2σ)I)/λ−2σ,

where λ−2σ = max(|a− g1 − 2σ|, |b− g1 − 2σ|), and apply the RCA algorithm
to this matrix.

To find a′2 and b′2 the procedure 1-4 is repeated with g1, α1, β1 replaced by g2, α2, β2,
and so on.

4.2.1. The RCA Algorithm.
1. We make a guess s for σ (0 < s < β). If (4.2) holds then all the eigenvalues

of M are [−β,−s] ∪ [s, β],. There are no eigenvalues in [−s, s].
2. Choose s < s′ < β and replace s← s′. If (4.3) holds it must be the case that

some eigenvalues of M are contained (−α′, α′).
3. Compute η using using (4.12), (4.8) and (4.11). and put s← |η|. The resulting

s is an estimate, to within machine accuracy, of σ.

5. Numerical Results. We consider two types of problems to demonstrate that
the proposed algorithm is numerically robust, accurate, and computationally effective,
especially when the matrix dimension is large. In one example we apply the algorithm
on a matrix for which the spectrum is poorly distributed. The second example is one
in which the eigenvalues are evenly distributed in [a, a′]∪[b′, b]. Here, the gap is simply
the interval between the inner extreme eigenvalues a′ to b′ (see Figure 1.1). Although
making the clusters symmetric about zero is inconsequential to the success of the
algorithms, both cases presented below use matrices with an eigenvalue spectrum
wholly contained in the range [−0.8,−0.6] and [0.6, 0.8]. In the examples that follow
the number of Chebyshev coefficients used is fixed at n = 13.

We will assume that the outer extremal eigenvalues are known (obtained via the
the power method). We then proceed to determine the gap in the spectrum, i.e., the
inner extreme eigenvalues. We will test the algorithm on two types of problems. We
will denote as problem I that of finding the gap to a family of normal matrices with
well distributed eigenvalues. These are matrices that are constructed to have a fixed
size gap and that, as the size of the matrix is made larger, contain more eigenvalues
in the non-gap range. Furthermore, their distribution is uniform outside of the gap.
Thus, for the matrix of size 4, the eigenvalues are −0.8,−0.6, 0.6, 0.8; for the matrix of
size 10, the eigenvalues are −0.8,−0.75,−0.7,−0.65,−0.6, 0.6, 0.65, 0.7, 0.75, 0.8, and
so on. A matrix with this spectrum can be generated by the following procedure: Find
an orthogonal matrix Q by performing a QR decomposition of a random matrix of
size m. Construct a diagonal matrix D of size m with entries equal to the eigenvalues.
Then, the matrix B = Q†DQ will result in a matrix of size m with the eigenvalues
corresponding to the non-zero entries in D.

Table 5.1 gives the relative error between the estimate and the exact value of
positive inner extreme eigenvalue as a function of the matrix size m. As the table
suggests, our estimate of the eigenvalue is very accurate. Moreover, the estimate of
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Table 5.1
Relative error between the estimate of the gap and its true value as a function of matrix size m,

for matrix problem I The matrix corresponding to problem I has a uniform distribution of eigenvalues
in its spectrum (see text). The exact gap spans −0.6 to 0.6.

m relative error
6 1.870171e-12
10 6.698346e-13
18 4.946044e-13
34 1.028807e-13
66 4.303224e-12
130 8.992806e-14
162 1.191639e-12
322 1.313764e-13

the value does not deteriorate with matrix size and thus appears to be numerically
stable with regard to matrix size.

Table 5.2 considers a family of matrices that have poorly distributed eigenvalues.
This example will be denoted as problem II. In this case we constructed matrices for
which the degenerate eigenvalues are −0.8,−0.6, 0.6, and 0.8. The circulant matrix
is constructed by applying a discrete Fourier transform to a vector with entries equal
to the eigenvalues. The matrix so constructed will possess the four eigenvalues just
mentioned, with multiplicity m/4, where m is chosen commensurate to 4. In other
words, the matrix of size 4 will be build to contain the eigenvalues −0.8,−0.6, 0.6, 0.8;
the matrix of size 8 will contain −0.8,−0.8,−0.6, 0.6, 0.6, 0.6, 0.8, 0.8, and so on.

Table 5.2
Relative error between the estimate of the gap and its true value as a function of matrix size

m, for problem II. The circulant matrices have degenerate eigenvalues, and a gap that spans −0.6
to 0.6. See text.

m relative error
4 2.368291e-12
8 1.483998e-13
16 3.811766e-14
32 1.229387e-12
64 1.529517e-12
128 6.032212e-14
256 1.852222e-13

The efficacy and the convergence rate might be expected to degrade in problem
II due to the uneven distribution of the eigenvalues outside of the gap. The lack of
uniformity in the distribution of the eigenvalues makes the acceleration norm larger
as compared to its value in the gap region. However, no significant deterioration is
evident in the results reported in the table, as evidenced in Table 5.2.

These numerical examples suggest that the algorithms are robust and practical;
they do not show any evidence of deterioration of the results as the matrix size is
increased. In fact, the accuracy increases as the size of the matrix to which the
algorithm is applied is made larger. This outcome can be understood as follows: We
will limit ourselves to the problem of detection of a and b, as a similar analysis holds
true in the case of a′ and b′. If a and b are estimates for the extreme eigenvalues of
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Sp(M), we have

sup
z∈Sp(M)

|Pn(z)| ≤ sup
z∈[a,b]

|Pn(z)|.(5.1)

Hence, with reference to (3.6), the larger the discrepancy in (5.1) the larger the error
becomes in detecting a and b. However if the matrix is large (and if there are many
distinct eigenvalues) then equality is essentially restored in (5.1). Indeed, in the
presence of many eigenvalues it is likely that (at least) one of these eigenvalues will
be located very near a point where the modified Chebyshev polynomial Pn(z) reaches
its extrema. For a small matrix (or of any matrix with few distinct eigenvalues)
that it may happen that none of the eigenvalues are located near a point where the
polynomial Pn(z) reaches its extrema in which case a significant discrepancy takes
place between the left hand side and the right hand side of (5.1). With regard to
why the algorithms still work well problems like those typified in Problem II, (i.e. few
distinct eigenvalues): Recall that the external extreme eigenvalues (−.8, .8) had been
found before hand, and we chose the polynomial Pa,b

2n (x) in (2.3) so that in that case

sup
x∈[−b,−a]∪[a,b]

|Pa,b
2n (x)| = |Pa,b

2n (0.8)|.(5.2)

(Also equal to |Pa,b
2n (−0.8)|.) Hence we have equality between the sup in (5.2) and

sup
x∈Sp(M)

|Pa,b
2n (x)|.

(Because 0.8 is in Sp(M).) Deterioration take place if

sup
x∈[−b,−a]∪[a,b]

|Pa,b
2n (x)| � sup

x∈Sp(M)

|Pa,b
2n (x)|.

6. Concluding Remarks. Finding the outer extreme eigenvalues, particularly
of a Hermitian (or normal) matrix, is easily accomplished by traditional means, such as
by the power method. Inverse iteration may be used to find inner extreme eigenvalues,
however, it requires solving a linear system on every iteration. The reverse Chebyshev
acceleration strategy for finding pairs of inner extreme eigenvalues is an effective
alternative. The computational complexity of the methodology is O(m2) for general
dense Hermitian matrices. Theoretical estimates and numerical experiments were
used to show that the scheme is numerically stable with respect to the size m of the
matrix and thus viable even when the matrix is very large.
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Appendix A. Localization of the Outer Extreme Eigenvalues.
In what follows we assume that −1 < a < b < 1. The goal here is to define

a minimum interval [a, b] that contain all of the eigenvalues of M . The following
theorem tells us whether a given interval has this property.

Theorem A.1. Let −1 < s < r < 1. Let the first guess x0 be the eigenfunction
associated with the largest eigenvalue and e0 = x0 − x. Let yn be as described in
(3.2), where the coefficients γk are those of P̃ s,r

n (x). Then all the eigenvalues of M
are located in [s, r] if and only if

‖yn − x‖ = sup
z∈[s,r]

|P̃ s,r
n (z)| ‖e0‖,(A.1)

and

P̃ s,r
n (z) :=

P s,r
n (z)

P s,r
n (1)

,(A.2)

where P s,r
n (r) = 1, P s,r

n (λ) > 1 if λ > r.
Proof. Assume Sp(M) ⊂ [s, r]. Then in view of (3.6) we see that (A.1) holds.
Without loss of generality assume that one of the eigenvalues of M , say, λ is such

that λ > r. Assume also, without loss of generality, that 1− r > s + 1 so that

sup
z∈[s,r]

|P̃ s,r
n (z)| = P̃ s,r

n (r) =
1

P s,r
n (1)

.



14 M. HASSON J. M. HYMAN AND J. M. RESTREPO

Then we have, again in view of (3.6)

‖yn − x‖ = sup
z∈[s,λ]

|P̃ s,r
n (z)| ‖e0‖.(A.3)

(We remark at this point that yn is uniquely defined.) However, because λ > r,

sup
z∈[s,λ]

|P̃ s,r
n (z)| = P̃ s,r

n (λ) >
1

P s,r
n (1)

= sup
z∈[s,r]

|P̃ s,r
n (z)|.

This demonstrates that instead of obtaining equality in (A.1), ‖yn−x‖ is greater than
the right hand side of that equation.

�
Theorem A.1 can be interpreted as follows: If ‖yn− x‖ > supz∈[s,r] |P̃ s,r

n (z)| ‖e0‖
then it must be the case that [s, r] does not contain all the eigenvalues of M , i.e.,
for s to be an estimate of a and r and estimate of b. However Theorem A.1 does
not indicate the extent to which [s, r] must be enlarged in order to contain all the
eigenvalues of M. Our next result precisely addresses this question. We assume that
for every eigenvalue t ∈ Sp(M) we have s < t.

Theorem A.2. Let −1 ≤ s < r < 1. Let the first guess x0 be such that the error
e0 is the largest eigenvalue, in absolute value, of Pn(M) =

∑n
k=0 γkMk. Assume, with

the notation of Theorem A.1, that

‖yn − x‖ > sup
z∈[s,r]

|P̃ s,r
n (z)| ‖e0‖ =: acc,(A.4)

so that there are eigenvalues t of M with t > r. Then the largest eigenvalue b of M is
the largest real solution η of the following equation:∣∣∣P̃ s,r

n (η)
∣∣∣ = ‖yn − x‖

‖e0‖
.(A.5)

Proof. In view of Theorem A.1 we have for the largest eigenvalue b of M

‖yn − x‖ = sup
z∈[s,b]

|P̃ s,r
n (z)| ‖e0‖,(A.6)

But

sup
z∈[s,b]

|P̃ s,r
n (z)| = P̃ s,r

n (b).

Hence the theorem follows. �
Theorem A.1 tells us that if we overestimate, that is if SP (M) ⊂ [s, r], then it

must be the case that (A.1) holds. However, we do not know how to adjust the interval
[s, r] so that it encloses more closely SP (M). Theorem A.2, in contrast, tells us that if
we underestimate, i.e., that there are eigenvalues t of M with t > b, then, in addition
to knowing that we underestimate, we obtain in one step the largest eigenvalue of M.
The solution η of (A.5) is now found using (2.1) together with the defining relation
(A.2).

Define

δ :=
‖yn − x‖
‖e0‖

P s,r
n (1).(A.7)
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We remark that the solution x is fixed (and known) throughout the procedure hence
the dependence of δ on x is not indicated. Then, with η defined by (A.2) we introduce
ŷ satisfying

η =
1
2
(r − s)ỹ +

1
2
(r + s)(A.8)

or

ỹ =
1
2

((
δ +

√
δ2 − 1

) 1
n

+
(
δ −

√
δ2 − 1

) 1
n

)
.(A.9)

If there are eigenvalues t of M with t < s, then Theorem A.2 gives (in one step)
the smallest eigenvalue of M. More precisely, an estimate η of the smallest eigenvalue
is found by the above procedure, with (A.8) replaced by

η = −1
2
(r − s)ỹ +

1
2
(r + s),(A.10)

(A.7) and (A.9) remaining unchanged. Indeed, the right hand side of (A.10) is the
point symmetrically located with respect to s+r

2 of the right hand side of (A.8). The
observed convergence ‖yn − x‖ is known.

A.1. The Outer Eigenvalue Algorithm. In order to determine the smallest
interval containing all the eigenvalues of M we exploit Theorem A.1 and Theorem
A.2.

Defining s and r as estimates of the outer eigenvalues a and b, respectively, we
proceed as follows:

To estimate b:
1. choose s = −1 and make a guess for r, with −1 < r < 1. If (A.1) holds then

all the eigenvalues of M are in [s, r].
2. Choose t < r and put r ← t. If (A.4) holds it must be the case that some

eigenvalues of M are not contained [s, r]. Because s = −1, the eigenvalues of
M not contained in [s, r] are in fact larger than r.

3. Next, compute η using using (A.7), (A.8) and (A.9). and put r ← η.
4. We know now that the eigenvalues of M are located in [s, r] and that r is an

estimate for b, the rightmost eigenvalue of M.

Next, we proceed with the estimate of a:
5. choose t > s(= 1) and put s← t.
6. If (A.1) holds then all the eigenvalues of M are located in [s, r].
7. If (A.4) holds then it must be the case that some eigenvalues of M are not

located in [s, r]. These eigenvalues must be such that they are smaller than
s because r is (an estimate for) the largest eigenvalue. Next, compute η as
given by (A.7), (A.10) and (A.9) and put s← η.

8. The interval [s, r] is an estimate, within machine accuracy, of [a, b].


